3.632 \(\int \frac{(d+e x)^2}{(a+b (d+e x)^2+c (d+e x)^4)^3} \, dx\)

Optimal. Leaf size=363 \[ -\frac{(d+e x) \left (b+2 c (d+e x)^2\right )}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{(d+e x) \left (c \left (20 a c+b^2\right ) (d+e x)^2+b \left (8 a c+b^2\right )\right )}{8 a e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\sqrt{c} \left (\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}+20 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} a e \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (-\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}+20 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{8 \sqrt{2} a e \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

-((d + e*x)*(b + 2*c*(d + e*x)^2))/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + ((d + e*x)*(b*(
b^2 + 8*a*c) + c*(b^2 + 20*a*c)*(d + e*x)^2))/(8*a*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + (S
qrt[c]*(b^2 + 20*a*c + (b*(b^2 - 52*a*c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[
b^2 - 4*a*c]]])/(8*Sqrt[2]*a*(b^2 - 4*a*c)^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) + (Sqrt[c]*(b^2 + 20*a*c - (b*(b^2
 - 52*a*c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]*a*(
b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*e)

________________________________________________________________________________________

Rubi [A]  time = 1.03918, antiderivative size = 363, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {1142, 1119, 1178, 1166, 205} \[ -\frac{(d+e x) \left (b+2 c (d+e x)^2\right )}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{(d+e x) \left (c \left (20 a c+b^2\right ) (d+e x)^2+b \left (8 a c+b^2\right )\right )}{8 a e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\sqrt{c} \left (\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}+20 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} a e \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (-\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}+20 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{8 \sqrt{2} a e \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

-((d + e*x)*(b + 2*c*(d + e*x)^2))/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + ((d + e*x)*(b*(
b^2 + 8*a*c) + c*(b^2 + 20*a*c)*(d + e*x)^2))/(8*a*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)) + (S
qrt[c]*(b^2 + 20*a*c + (b*(b^2 - 52*a*c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[
b^2 - 4*a*c]]])/(8*Sqrt[2]*a*(b^2 - 4*a*c)^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) + (Sqrt[c]*(b^2 + 20*a*c - (b*(b^2
 - 52*a*c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]*a*(
b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*e)

Rule 1142

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rule 1119

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(d*x)^(m - 1)*(b + 2*c*
x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*(p + 1)*(b^2 - 4*a*c)), x] - Dist[d^2/(2*(p + 1)*(b^2 - 4*a*c)), Int[(d*x
)^(m - 2)*(b*(m - 1) + 2*c*(m + 4*p + 5)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^2}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^2}{\left (a+b x^2+c x^4\right )^3} \, dx,x,d+e x\right )}{e}\\ &=-\frac{(d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{\operatorname{Subst}\left (\int \frac{b-10 c x^2}{\left (a+b x^2+c x^4\right )^2} \, dx,x,d+e x\right )}{4 \left (b^2-4 a c\right ) e}\\ &=-\frac{(d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{(d+e x) \left (b \left (b^2+8 a c\right )+c \left (b^2+20 a c\right ) (d+e x)^2\right )}{8 a \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{\operatorname{Subst}\left (\int \frac{-b \left (b^2-16 a c\right )-c \left (b^2+20 a c\right ) x^2}{a+b x^2+c x^4} \, dx,x,d+e x\right )}{8 a \left (b^2-4 a c\right )^2 e}\\ &=-\frac{(d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{(d+e x) \left (b \left (b^2+8 a c\right )+c \left (b^2+20 a c\right ) (d+e x)^2\right )}{8 a \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\left (c \left (b^2+20 a c-\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{16 a \left (b^2-4 a c\right )^2 e}+\frac{\left (c \left (b^2+20 a c+\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{16 a \left (b^2-4 a c\right )^2 e}\\ &=-\frac{(d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{(d+e x) \left (b \left (b^2+8 a c\right )+c \left (b^2+20 a c\right ) (d+e x)^2\right )}{8 a \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\sqrt{c} \left (b^2+20 a c+\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} a \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}} e}+\frac{\sqrt{c} \left (b^2+20 a c-\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} a \left (b^2-4 a c\right )^2 \sqrt{b+\sqrt{b^2-4 a c}} e}\\ \end{align*}

Mathematica [A]  time = 5.05696, size = 382, normalized size = 1.05 \[ \frac{\frac{2 (d+e x) \left (8 a b c+20 a c^2 (d+e x)^2+b^2 c (d+e x)^2+b^3\right )}{a \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{4 \left (b (d+e x)+2 c (d+e x)^3\right )}{\left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{\sqrt{2} \sqrt{c} \left (b^2 \sqrt{b^2-4 a c}+20 a c \sqrt{b^2-4 a c}-52 a b c+b^3\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{2} \sqrt{c} \left (b^2 \sqrt{b^2-4 a c}+20 a c \sqrt{b^2-4 a c}+52 a b c-b^3\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{a \left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}}{16 e} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

((-4*(b*(d + e*x) + 2*c*(d + e*x)^3))/((b^2 - 4*a*c)*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + (2*(d + e*x)*(b^
3 + 8*a*b*c + b^2*c*(d + e*x)^2 + 20*a*c^2*(d + e*x)^2))/(a*(b^2 - 4*a*c)^2*(a + b*(d + e*x)^2 + c*(d + e*x)^4
)) + (Sqrt[2]*Sqrt[c]*(b^3 - 52*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 20*a*c*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt
[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*Sq
rt[c]*(-b^3 + 52*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 20*a*c*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/
Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(5/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(16*e)

________________________________________________________________________________________

Maple [C]  time = 0.043, size = 885, normalized size = 2.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x)

[Out]

(1/8*c^2*e^6*(20*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^7+7/8*c^2*d*e^5*(20*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b^
4)/a*x^6+1/8*(420*a*c^2*d^2+21*b^2*c*d^2+28*a*b*c+2*b^3)*c*e^4/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^5+5/8*c*d*e^3*(1
40*a*c^2*d^2+7*b^2*c*d^2+28*a*b*c+2*b^3)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^4+1/8*e^2*(700*a*c^3*d^4+35*b^2*c^2*d^
4+280*a*b*c^2*d^2+20*b^3*c*d^2+36*a^2*c^2+5*a*b^2*c+b^4)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^3+1/8*d*e*(420*a*c^3*d
^4+21*b^2*c^2*d^4+280*a*b*c^2*d^2+20*b^3*c*d^2+108*a^2*c^2+15*a*b^2*c+3*b^4)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^2+
1/8*(140*a*c^3*d^6+7*b^2*c^2*d^6+140*a*b*c^2*d^4+10*b^3*c*d^4+108*a^2*c^2*d^2+15*a*b^2*c*d^2+3*b^4*d^2+16*a^2*
b*c-a*b^3)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x+1/8*d/e*(20*a*c^3*d^6+b^2*c^2*d^6+28*a*b*c^2*d^4+2*b^3*c*d^4+36*a^2*
c^2*d^2+5*a*b^2*c*d^2+b^4*d^2+16*a^2*b*c-a*b^3)/(16*a^2*c^2-8*a*b^2*c+b^4)/a)/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2
*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2+1/16/(16*a^2*c^2-8*a*b^2*c+b^4)/a/e*sum((c*e^2*(20*a
*c+b^2)*_R^2+2*c*d*e*(20*a*c+b^2)*_R+20*a*c^2*d^2+b^2*c*d^2-16*a*b*c+b^3)/(2*_R^3*c*e^3+6*_R^2*c*d*e^2+6*_R*c*
d^2*e+2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4*c*d^3*e+2*b
*d*e)*_Z+c*d^4+b*d^2+a))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 4.94417, size = 16612, normalized size = 45.76 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="fricas")

[Out]

1/16*(2*(b^2*c^2 + 20*a*c^3)*e^7*x^7 + 14*(b^2*c^2 + 20*a*c^3)*d*e^6*x^6 + 2*(2*b^3*c + 28*a*b*c^2 + 21*(b^2*c
^2 + 20*a*c^3)*d^2)*e^5*x^5 + 10*(7*(b^2*c^2 + 20*a*c^3)*d^3 + 2*(b^3*c + 14*a*b*c^2)*d)*e^4*x^4 + 2*(b^2*c^2
+ 20*a*c^3)*d^7 + 2*(35*(b^2*c^2 + 20*a*c^3)*d^4 + b^4 + 5*a*b^2*c + 36*a^2*c^2 + 20*(b^3*c + 14*a*b*c^2)*d^2)
*e^3*x^3 + 4*(b^3*c + 14*a*b*c^2)*d^5 + 2*(21*(b^2*c^2 + 20*a*c^3)*d^5 + 20*(b^3*c + 14*a*b*c^2)*d^3 + 3*(b^4
+ 5*a*b^2*c + 36*a^2*c^2)*d)*e^2*x^2 + 2*(b^4 + 5*a*b^2*c + 36*a^2*c^2)*d^3 + 2*(7*(b^2*c^2 + 20*a*c^3)*d^6 +
10*(b^3*c + 14*a*b*c^2)*d^4 - a*b^3 + 16*a^2*b*c + 3*(b^4 + 5*a*b^2*c + 36*a^2*c^2)*d^2)*e*x - sqrt(1/2)*((a*b
^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*e^9*x^8 + 8*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d*e^8*x^7 + 2*(a*b^5
*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^
2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^3 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d)*e^6*x^5 + (a*b^6 - 6*a^2*b
^4*c + 32*a^4*c^3 + 70*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^4 + 30*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c
^3)*d^2)*e^5*x^4 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^5 + 10*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b
*c^3)*d^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d)*e^4*x^3 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^
4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^6 + 15*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^4 + 3*(a*b^6 - 6*a^2*b
^4*c + 32*a^4*c^3)*d^2)*e^3*x^2 + 4*(2*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^7 + 3*(a*b^5*c - 8*a^2*b^3*c
^2 + 16*a^3*b*c^3)*d^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^3 + (a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d)*e^
2*x + ((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^8 + a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + 2*(a*b^5*c - 8*a^2*
b^3*c^2 + 16*a^3*b*c^3)*d^6 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^4 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2
)*d^2)*e)*sqrt(-(b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 1680*a^3*b*c^3 + (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*
c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)/((a^6*b^10
- 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4)))/((a^3*b^10 - 20
*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))*log((35*b^6*c^2 - 1491
*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)*e*x + (35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000
*a^3*c^5)*d + 1/2*sqrt(1/2)*((a^3*b^14 - 38*a^4*b^12*c + 480*a^5*b^10*c^2 - 2720*a^6*b^8*c^3 + 6400*a^7*b^6*c^
4 + 1536*a^8*b^4*c^5 - 32768*a^9*b^2*c^6 + 40960*a^10*c^7)*e^3*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)/((a^6*b^1
0 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4)) - (b^11 - 53*a
*b^9*c + 940*a^2*b^7*c^2 - 6832*a^3*b^5*c^3 + 21824*a^4*b^3*c^4 - 25600*a^5*b*c^5)*e)*sqrt(-(b^7 - 35*a*b^5*c
+ 280*a^2*b^3*c^2 + 1680*a^3*b*c^3 + (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b
^2*c^4 - 1024*a^8*c^5)*e^2*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 -
 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4)))/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640
*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))) + sqrt(1/2)*((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*e
^9*x^8 + 8*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d*e^8*x^7 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3 + 14
*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^3 +
3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d)*e^6*x^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3 + 70*(a*b^4*c^2 - 8*
a^2*b^2*c^3 + 16*a^3*c^4)*d^4 + 30*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^2)*e^5*x^4 + 4*(14*(a*b^4*c^2 -
8*a^2*b^2*c^3 + 16*a^3*c^4)*d^5 + 10*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^3 + (a*b^6 - 6*a^2*b^4*c + 32*
a^4*c^3)*d)*e^4*x^3 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^
6 + 15*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^4 + 3*(a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^2)*e^3*x^2 + 4*(2
*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^7 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^5 + (a*b^6 - 6*a^
2*b^4*c + 32*a^4*c^3)*d^3 + (a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d)*e^2*x + ((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16
*a^3*c^4)*d^8 + a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^6 + (a*b^6 -
 6*a^2*b^4*c + 32*a^4*c^3)*d^4 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d^2)*e)*sqrt(-(b^7 - 35*a*b^5*c + 28
0*a^2*b^3*c^2 + 1680*a^3*b*c^3 + (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c
^4 - 1024*a^8*c^5)*e^2*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640
*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4)))/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6
*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))*log((35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000
*a^3*c^5)*e*x + (35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)*d - 1/2*sqrt(1/2)*((a^3*b^14
 - 38*a^4*b^12*c + 480*a^5*b^10*c^2 - 2720*a^6*b^8*c^3 + 6400*a^7*b^6*c^4 + 1536*a^8*b^4*c^5 - 32768*a^9*b^2*c
^6 + 40960*a^10*c^7)*e^3*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 6
40*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4)) - (b^11 - 53*a*b^9*c + 940*a^2*b^7*c^2 - 6832*a^3*b^
5*c^3 + 21824*a^4*b^3*c^4 - 25600*a^5*b*c^5)*e)*sqrt(-(b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 1680*a^3*b*c^3 + (
a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2*sqrt((b^4 -
 50*a*b^2*c + 625*a^2*c^2)/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 -
 1024*a^11*c^5)*e^4)))/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024
*a^8*c^5)*e^2))) + sqrt(1/2)*((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*e^9*x^8 + 8*(a*b^4*c^2 - 8*a^2*b^2*c^3
+ 16*a^3*c^4)*d*e^8*x^7 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c
^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^3 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*
c^3)*d)*e^6*x^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3 + 70*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^4 + 30*(a*
b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^2)*e^5*x^4 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^5 + 10*(
a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d)*e^4*x^3 + 2*(a^2*b^5 - 8*a
^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^6 + 15*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a
^3*b*c^3)*d^4 + 3*(a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^2)*e^3*x^2 + 4*(2*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c
^4)*d^7 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^3 + (a^2*b^5 -
 8*a^3*b^3*c + 16*a^4*b*c^2)*d)*e^2*x + ((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^8 + a^3*b^4 - 8*a^4*b^2*c
+ 16*a^5*c^2 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^6 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^4 + 2*(a^
2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d^2)*e)*sqrt(-(b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 1680*a^3*b*c^3 - (a^3*
b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2*sqrt((b^4 - 50*
a*b^2*c + 625*a^2*c^2)/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 102
4*a^11*c^5)*e^4)))/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8
*c^5)*e^2))*log((35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)*e*x + (35*b^6*c^2 - 1491*a*b
^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)*d + 1/2*sqrt(1/2)*((a^3*b^14 - 38*a^4*b^12*c + 480*a^5*b^10*c^2 -
2720*a^6*b^8*c^3 + 6400*a^7*b^6*c^4 + 1536*a^8*b^4*c^5 - 32768*a^9*b^2*c^6 + 40960*a^10*c^7)*e^3*sqrt((b^4 - 5
0*a*b^2*c + 625*a^2*c^2)/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1
024*a^11*c^5)*e^4)) + (b^11 - 53*a*b^9*c + 940*a^2*b^7*c^2 - 6832*a^3*b^5*c^3 + 21824*a^4*b^3*c^4 - 25600*a^5*
b*c^5)*e)*sqrt(-(b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 1680*a^3*b*c^3 - (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*
c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)/((a^6*b^10
- 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4)))/((a^3*b^10 - 20
*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))) - sqrt(1/2)*((a*b^4*c
^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*e^9*x^8 + 8*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d*e^8*x^7 + 2*(a*b^5*c -
 8*a^2*b^3*c^2 + 16*a^3*b*c^3 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^2 -
8*a^2*b^2*c^3 + 16*a^3*c^4)*d^3 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d)*e^6*x^5 + (a*b^6 - 6*a^2*b^4*c
 + 32*a^4*c^3 + 70*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^4 + 30*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*
d^2)*e^5*x^4 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^5 + 10*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3
)*d^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d)*e^4*x^3 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^4*c^
2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^6 + 15*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^4 + 3*(a*b^6 - 6*a^2*b^4*c
 + 32*a^4*c^3)*d^2)*e^3*x^2 + 4*(2*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^7 + 3*(a*b^5*c - 8*a^2*b^3*c^2 +
 16*a^3*b*c^3)*d^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^3 + (a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d)*e^2*x
+ ((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^8 + a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + 2*(a*b^5*c - 8*a^2*b^3*
c^2 + 16*a^3*b*c^3)*d^6 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^4 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d^
2)*e)*sqrt(-(b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 1680*a^3*b*c^3 - (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2
- 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)/((a^6*b^10 - 20
*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4)))/((a^3*b^10 - 20*a^4
*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))*log((35*b^6*c^2 - 1491*a*b
^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)*e*x + (35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3
*c^5)*d - 1/2*sqrt(1/2)*((a^3*b^14 - 38*a^4*b^12*c + 480*a^5*b^10*c^2 - 2720*a^6*b^8*c^3 + 6400*a^7*b^6*c^4 +
1536*a^8*b^4*c^5 - 32768*a^9*b^2*c^6 + 40960*a^10*c^7)*e^3*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)/((a^6*b^10 -
20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4)) + (b^11 - 53*a*b^9
*c + 940*a^2*b^7*c^2 - 6832*a^3*b^5*c^3 + 21824*a^4*b^3*c^4 - 25600*a^5*b*c^5)*e)*sqrt(-(b^7 - 35*a*b^5*c + 28
0*a^2*b^3*c^2 + 1680*a^3*b*c^3 - (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c
^4 - 1024*a^8*c^5)*e^2*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640
*a^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4)))/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6
*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))) - 2*(a*b^3 - 16*a^2*b*c)*d)/((a*b^4*c^2 - 8*a^2*b^2*c^3 + 1
6*a^3*c^4)*e^9*x^8 + 8*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d*e^8*x^7 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^
3*b*c^3 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3
*c^4)*d^3 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d)*e^6*x^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3 + 70*(a*
b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^4 + 30*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^2)*e^5*x^4 + 4*(14*(
a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^5 + 10*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^3 + (a*b^6 - 6*a^2
*b^4*c + 32*a^4*c^3)*d)*e^4*x^3 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16
*a^3*c^4)*d^6 + 15*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^4 + 3*(a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^2)*e^
3*x^2 + 4*(2*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^7 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^5 + (
a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^3 + (a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d)*e^2*x + ((a*b^4*c^2 - 8*a^2*
b^2*c^3 + 16*a^3*c^4)*d^8 + a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^
6 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^4 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d^2)*e)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2/(a+b*(e*x+d)**2+c*(e*x+d)**4)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{2}}{{\left ({\left (e x + d\right )}^{4} c +{\left (e x + d\right )}^{2} b + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="giac")

[Out]

integrate((e*x + d)^2/((e*x + d)^4*c + (e*x + d)^2*b + a)^3, x)